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Abstract

The subject of investigating causation in ecology has been widely discussed in

recent years, especially by advocates of a structural causal model (SCM)

approach. Some of these advocates have criticized the use of predictive models

and model selection for drawing inferences about causation. We argue that the

comparison of model-based predictions with observations is a key step in

hypothetico-deductive (H-D) science and remains a valid approach for assessing

causation. We draw a distinction between two approaches to inference based on

predictive modeling. The first approach is not guided by causal hypotheses and

focuses on the relationship between a (typically) single response variable and a

potentially large number of covariates. We agree that this approach does not

yield useful inferences about causation and is primarily useful for hypothesis

generation. The second approach follows a H-D framework and is guided by

specific hypotheses about causal relationships. We believe that this has been,

and continues to be, a useful approach to causal inference. Here, we first define

different kinds of causation, arguing that a “probability-raisers-of-processes” def-
inition is especially appropriate for many ecological systems. We outline differ-

ent scientific “designs” for generating the observations used to investigate

causation. We briefly outline some relevant components of the SCM and H-D

approaches to investigating causation, emphasizing a H-D approach that focuses

on modeling causal effects on vital rate (e.g., rates of survival, recruitment, local

extinction, colonization) parameters underlying system dynamics. We consider

criticisms of predictive modeling leveled by some SCM proponents and provide

two example analyses of ecological systems that use predictive modeling and

avoid these criticisms. We conclude that predictive models have been, and can

continue to be, useful for providing inferences about causation.
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“Hume saw clearly that certain concepts, for
example that of causality, cannot be deduced
from our perceptions of experience by logical
methods…”—A. Einstein

(Isaacson, 2007)

INTRODUCTION

Throughout history, science has proven to be the most
successful process by which humans have learned how
the biological/physical world works, with much of that
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learning focused on understanding cause–effect relation-
ships. A key step in the scientific process entails the com-
parison of model-based predictions against observations
as a primary means of testing single hypotheses and
discriminating among competing hypotheses. Recent lit-
erature includes several criticisms that ecologists have
not used appropriate methods for studying causation,
coupled with recommendations to follow a structural
causal model (SCM) framework (Pearl, 2009), especially
when dealing with observational data. SCM advocates
frequently contrast their recommended approach with
predictive modeling, claiming that the task of prediction
is distinct from, rather than a component of, the process
of investigating causation (e.g., Arif & MacNeil, 2022b;
Laubach et al., 2021) and that “Predictive Models Aren’t
for Causal Inference” (Arif & MacNeil, 2022b). Other
SCM proponents have emphasized difficulties in meeting
assumptions underlying the use of predictive models for
assessing causation (Ferraro et al., 2019). Our purpose
here is not to disparage the SCM framework, which has
made especially important contributions in emphasizing
specification of a priori hypotheses and in identifying and
removing biasing effects of potential confounding vari-
ables. Instead, we respond to criticisms of predictive
modeling and argue that it can be effectively used for
causal analysis in ecology and elsewhere.

We conclude that the criticisms leveled at predictive
modeling and model selection by some proponents of
SCM are sometimes appropriate for exploratory uses
of these former approaches. However, we argue that
these criticisms do not apply generally to thoughtful uses
of predictive modeling and model selection. In fact, ecol-
ogists have been conducting effective causal analysis
based on these approaches for decades. Predictive model-
ing has been a key component of the scientific methodol-
ogy responsible for much of what we currently know of
ecology and remains an effective approach to inference
about cause-effect relationships.

We consider definitions of predictive modeling and
causation and then highlight difficulties in investigating
causal relationships. We consider approaches to study
design that vary in the strength of inference that they
permit but are consistent in their use of predictive
models. These sections of the paper present our perspec-
tives on these topics as points of reference for the subse-
quent discussion. We do not contrast SCM versus other
approaches, as we believe that these topics provide com-
mon ground for advocates of different approaches to
inferring causation.

We briefly introduce the SCM framework and con-
sider motivations for its development. We also introduce
the general hypothetico-deductive (H-D) framework,
which relies on model-based predictions. We outline a

specific H-D approach that we believe to be especially
useful for investigating causation. We then consider criti-
cisms of predictive modeling by some SCM proponents,
arguing that they do not apply to thoughtful and
informed uses of predictive models. We present two
examples of studies that use predictive modeling and
model selection to investigate causal relationships. Both
studies deal effectively with potentially confounding vari-
ables that were identified, a topic of emphasis in SCM.
We conclude that there are multiple viable approaches
for investigating causal relationships in ecology and else-
where and that predictive models play an essential role
in at least some of these approaches.

DEFINITIONS

We define a predictive model as a simplified and abstract
representation of a system that can be used to quantify
the probabilities associated with future system dynamics
or responses. Some predictive models are based on corre-
lations and associations that have no identified or even
hypothesized causal basis. However, other predictive
models are developed to represent hypothesized causal
relationships, often based on mechanisms, and we argue
that these can be very useful in investigating causation.

Formal definitions of causation specify antecedent
conditions, consequent effects, and a rule of corres-
pondence for their conjoint occurrence (Williams, 1997).
Necessary causation specifies that a particular condition
(putative cause) must be present for a specific effect to
occur. The absence of the cause implies the absence of
the effect, but the presence of the cause does not guaran-
tee the presence of the effect (e.g., other conditions may
be required as well). Sufficient causation specifies that a
particular condition (cause) guarantees the presence of
the effect. However, the presence of the effect does not
ensure the presence of the cause. These definitions of
both necessary and sufficient causation can be viewed as
models that make clear predictions about the presence of
putative causes and effects.

The above definitions of causation admit no excep-
tions; for example, sufficiency states that a condition
guarantees the effect. When dealing with ecological sys-
tems, we often deal with putative causes that do not guar-
antee an effect, but instead increase the probability that
the effect will occur (see Reichenbach, 2008, translation
of 1915 thesis). Ecological effects are frequently defined
as changes in the value of a state variable (a variable
selected to characterize system condition such as popula-
tion size, species presence, species richness), causing us
to focus on the process parameters governing such
change (e.g., rates of survival and reproduction; local
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extinction; and colonization). For purposes of this paper,
we define a probabilistic causal factor as one that increases
the probability for a process governing an effect.

This definition is consistent with the “causes as
probability-raisers-of-processes” perspective, in which
“causation is rooted in the comparative probability of
the connecting line to the effect with the cause versus
without” (Schaffer, 2001). Under this view, necessary
and sufficient causation are based not on the presence of
the effect but instead on raising the probability that the
effect will occur. This perspective is consistent with the
usual situation in ecological systems of multiple comple-
mentary causes (e.g., Williams, 1997) and multiple
hypotheses (Chamberlin, 1897). Inferences about multifac-
tor causation focus on comparisons of model-based predic-
tions about the existence of the causes with estimates of
their effects on dynamic rate parameters. We will refer to
the “causes as probability-raisers-of-processes” perspective
as simply probabilistic causation.

Although our focus will be on investigating probabi-
listic causation using H-D science, we also note that a dif-
ferent definition of causation, Granger causation, is based
on prediction (Granger, 1969). Specifically, a time series
of variable xt is concluded not to be “causal” of the time
series of another variable yt, if the history of xt does not
reduce the variance of prediction of the yt series
(Shojaie & Fox, 2022). Ecologists have borrowed methods
from nonlinear dynamics to investigate Granger causa-
tion using time series data (e.g., Moniz et al., 2007;
Sugihara et al., 2012). However, some of the assumptions
that underlie this type of causation are relatively restric-
tive, and we currently believe that the “causes as
probability-raisers-of-processes” perspective is likely to be
most useful to ecologists.

INVESTIGATING CAUSATION

Investigations of causation are plagued by several diffi-
culties. An initial difficulty is best described via the
framework of Rubin’s causal model, which is based on
the idea of potential outcomes (Rubin, 1974; also see
related counterfactual arguments of Lewis, 1973). For a
single individual at any point in space and time, we would
like to observe the outcomes of both applying, and not
applying, a proposed causal factor. The “causal effect”
would then be measured as the difference between the
two outcomes. But we can either apply the factor or not,
so one of the potential outcomes is always unobserved.
This dilemma is relevant to probabilistic causation as well
(Schaffer, 2001).

The natural response to our inability to observe both
outcomes on any one individual is to rely on samples of

individuals, applying the causal factor to all individuals
from one sample and not to those of another. The differ-
ence between average outcomes for these two groups
would then provide an estimate of effect. However,
effects can have multiple causes, and samples of individ-
uals may differ with respect to one or more of them.
Thus, differences in average outcomes can reflect the
effects of both focal and non-focal causal factors.
Non-focal causal factors pose a problem, because we
can seldom identify all possible causes of an effect, or
much less control, detect, or measure them during
investigation. True randomized experiments (see below)
provide a means of dealing with this issue, but virtually
all other kinds of investigation are vulnerable.

Another difficulty is the asymmetric nature of evi-
dence required for falsification versus confirmation
(e.g., Popper, 1962). A single observation of an effect in
the absence of a hypothesized necessary cause is ade-
quate to falsify the causal hypothesis and eliminate it
from further consideration. However, repeated observa-
tions of the effect always accompanied by the presence of
the hypothesized cause cannot prove necessary causation,
as a future observation can always be inconsistent with
this hypothesis. Similarly for sufficient causation, repe-
ated observations of the effect following the purported
cause do not rule out the possibility that this sequence
may not always occur.

This asymmetry of evidence does not occur with prob-
abilistic causation, as a study either does or does not cor-
roborate a hypothesis about a causal effect. If model
selection, likelihood ratio tests, or tests of an effect coeffi-
cient do not support the effect, this does not necessarily
remove the effect from further consideration. Inferences
about probabilistic causation can be based on the accu-
mulation of evidence from multiple studies (e.g., Hilborn
& Mangel, 1997; Nelder, 1986; Nichols et al., 2019, 2021;
Tredennick et al., 2021).

An additional difficulty associated with probabilistic
causation entails observations. Many inferences about
necessary and sufficient causation (and many SCM
examples) are based on direct observation of the out-
come when a casual factor is, or is not, applied.
However, probabilities cannot be directly observed, but
must instead be estimated, usually from multiple trials
in which the presumed causal variable is applied to the
focal variable or system. Such estimation produces a
variance component that should be accounted for
when investigating causation.

Collection of observations for investigations of causal
relationships can occur in several different ways, dictated
by study design. For all the above definitions of cau-
sation, different study designs provide evidence that
supports different degrees of confidence, regardless of
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whether analysis follows the SCM approach or a H-D
approach using predictive models. The phrase strength of
inference has been used in multiple ways, but here, we
use it to refer to the general level of confidence that a
study’s results support the corroboration or falsification
of a hypothesis. For this paper, the hypotheses focus on
the existence of cause–effect relationships.

Experiments

Randomized, controlled experiments are designed to deal
with the difficulty of not being able to identify and thus
control for all potential causes of a focal effect. They are
sometimes termed manipulative experiments, because
treatments are under the control of the investigator and
can be assigned to experimental units. Such experiments
permit some of the strongest possible inferences about
causation and are distinguished from other study designs
by their use of controls, replication, and randomization
(e.g., Fisher, 1947; Hariton & Locascio, 2018; Williams
et al., 2002). Controls refer to experimental units to
which no purported causal “treatment” is applied, pro-
viding a baseline against which to quantify treatment
effects.

Replication refers to the assignment of each treatment
(and control) to multiple experimental units, providing
information about variation expected within a treatment
group. This information is then used to distinguish treat-
ment effects from natural variation not associated with
differing treatments.

Randomization refers to the random assignment
of treatments and control to experimental units.
Randomization offers protection against the first diffi-
culty listed above: our inability to identify (or detect,
control, or measure) all possible causes of any effect.
Nonrandom assignment of treatments to experimental
units admits the possibility of bias caused by experimen-
tal units assigned to different treatment groups also
experiencing differences in unidentified causal factors
(e.g., Fisher, 1947; Hariton & Locascio, 2018; Kimmel
et al., 2021; Larsen et al., 2019; Williams et al., 2002).

Constrained designs

Constrained designs represent efforts to draw inferences
about causation from studies that focus on treatment
effects but that lack at least one of the three design fea-
tures that define an experiment. Various names have
been attributed to constrained designs based on which
features of an experiment are missing (e.g., Green, 1979;
Skalski & Robson, 1992). Strength of inference is reduced

for constrained designs, when compared with experi-
ments. But constrained design studies are widely used in
ecology and conservation because experiments are
extremely difficult, if not impossible, to conduct for many
kinds of questions.

One example of a constrained design uses “treat-
ments” that are applied by someone other than the
investigator. For example, consider the hypothesis
that high-voltage transmission lines cause various
problems in humans, other animals, and plants
(e.g., Balaji, 2015). A true experiment entailing the
random selection of locations for installation of such
lines, as well as for controls with no lines, would
simply not be feasible or recommended in most
instances. Thus, a constrained approach to studying this
problem would be to select multiple sites with existing
transmission lines (treatments), and multiple sites with
similar habitats but without high-voltage lines (controls),
and to measure hypothesized effects (e.g., plant growth)
on these two sets of sites. Some SCM proponents refer to
such constrained designs as “matching studies” or
“propensity analyses” (e.g., Arif & MacNeil, 2022a). Such
a study includes controls and replication, but the assign-
ment of treatment (and control in some cases) to experi-
mental units (sites within the landscape) was not under
the control of the investigator and hence not carried out
randomly. If such a study showed reduced plant growth
in the sites with transmission lines, we would take this as
evidence supporting the possibility of transmission line
effects. However, we would recognize that some other
factor(s) might have been responsible for the plant growth
differences between the two groups of sites, despite our
attempts to select similar control sample units.

Observational studies

Many studies in ecology and conservation lack all three
design features of an experiment (controls, randomiza-
tion, replication) and are often referred to as observa-
tional (or “mensurative”) studies. For purposes of this
paper, we specify that such studies are guided by a priori
hypotheses in the sense that predictions are made and
compared against observations. This specification distin-
guishes such studies from exploratory data analyses
focused on pattern recognition and hypothesis genera-
tion. Observational studies can provide inferences about
causation, although strength of inference is reduced rela-
tive to experimentation and frequently to constrained
designs as well.

As an example of an observational study, we consider
a 7-year capture–recapture study of European Dippers
(Cinclus cinclus; Lebreton et al., 1992; Marzolin, 1988).
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A major flood occurred during the study and was hypoth-
esized to have negatively affected two years of dipper sur-
vival rates (possibly because of reduced access to the
aquatic invertebrates on which dippers feed), leading to a
model with two survival rate parameters, one for the
flood years and another for the non-flood years. Model
selection statistics and likelihood ratio tests led to the con-
clusion that the flood model was the most appropriate rel-
ative to the other three models under consideration
(Lebreton et al., 1992). Estimated annual survival for the
flood years (0.47) was smaller than that of the non-flood
years (0.61), as predicted. These results thus supported the
hypothesis that severe floods were a cause of the reduced
survival. The absence of geographic replication (multiple
study sites), a control site (a site with no flooding during
the flood years), and random assignment of “treatments”
(flood) all weakened the inference of causation, and fac-
tors other than the flood could have operated to reduce
survival in the flood years.

We emphasize that the hypothesis of reduced sur-
vival during the two flood years guided the modeling
and testing in the analyses of this study. This kind of
effort differs from another common approach of gathering
a list of available covariate data (e.g., multiple weather
variables) and asking whether one or more is related to
annual survival, without any specific predictions. We view
this latter exploratory approach as perhaps useful for
hypothesis generation, but not very useful for the scien-
tific step of testing predictions against observations (see
Rexstad et al., 1988; Romesburg, 1981; Williams et al.,
2002). Many of the papers advocating causal analysis
methods for ecologists compare the SCM approach to
such exploratory analyses.

SCM FRAMEWORK

Our focus in this paper is to suggest that use of predictive
modeling (e.g., generalized linear models, GLMs) and
related tools such as model selection can provide an effec-
tive means of investigating causation. Hence, we make no
attempt to describe the SCM framework in any sort of detail
(see Laubach et al., 2021; Pearl, 2009, 2010). Instead, we
briefly discuss (1) the directed acyclic graphical (DAG)
approach used by many for SCM and (2) the motivation for
development of SCM, arguing that more traditional
approaches can be used to achieve similar results.

Directed acyclic graphs

Proponents of the SCM framework frequently recom-
mend use of DAGs to specify and visualize the causal

structure of a modeled system (Arif & MacNeil, 2022a,
2022b; Cronin & Schoolmaster, 2018; Elwert, 2013;
Ferraro et al., 2019; Grace & Irvine, 2020; Greenland
et al., 1999; Laubach et al., 2021; Pearl, 2009, 2010).
DAGs are qualitative graphical models consisting of
nodes that represent variables and directed arrows
between nodes that represent potential causal effects.
Algorithms developed by proponents of SCM can be
used in conjunction with DAGs to identify potential
confounding variables that could produce misleading
results in causal analyses and represent an important
contribution of the SCM framework (e.g., Grace &
Irvine, 2020; Greenland et al., 1999).

The “acyclic” term in DAG specifies the absence of
(1) reciprocal causation in which variable A can produce
an effect on variable B, and variable B can affect variable
A as well, and (2) feedback loops in which a variable can
affect itself (Elwert, 2013). However, Greenland et al.
(1999) note that cyclic graphs (e.g., causal arrows going
in both directions between two variables) can be
transformed into acyclic graphs by incorporating
time-specificity into the diagram. So, Xt can affect both
Yt+1 and Xt+1, and Yt can affect both Xt+1 and Yt+1, for
example.

Importantly, DAGs are qualitative models used to
illustrate investigator hypotheses about causation within
a focal system. We view this emphasis of SCM on a priori
hypotheses as very important, especially when they are
based on mechanistic knowledge and hard thinking
about how a system works (e.g., Grace, 2024; Grace &
Irvine, 2020). Such thinking is not restricted to DAG con-
struction. Instead, it characterizes the development of
hypotheses in most of the good ecological research
conducted over the last century (Nicholson, 1954) and
more recently has been incorporated formally via the use
of informed priors in a Bayesian inferential framework
(e.g., Link & Barker, 2009).

Motivation

A stated motivation for the development of SCM is a
focus on system dynamics. Pearl (2010) describes stan-
dard statistical analyses as having a focus on association
among variables. He contrasts standard approaches with
SCM: “Causal analysis goes one step further; its aim is to
infer not only the likelihood of events under static condi-
tions, but also the dynamics of events under changing
conditions, for example, changes induced by treatments
or external interventions.” (Pearl, 2010). We strongly
agree with this emphasis on dynamics. Indeed, the tem-
poral sequencing of cause and effect forces a focus on
dynamics.
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THE H-D SCIENTIFIC METHOD AND
PREDICTIVE MODELS

General description

The H-D approach to science has a relatively long his-
tory in ecology (e.g., Chitty, 1960; Fretwell, 1972;
Romesburg, 1981) and other disciplines (Platt, 1964;
Popper, 1962) and has led to many important advances,
even if it is not used as frequently as we would like.
The approach can be briefly summarized in the follow-
ing steps: (1) develop one or more hypotheses about
how a system works, (2) deduce predictions from those
hypotheses, (3) collect relevant observations, (4) com-
pare observations with predictions, and (5) use these
comparisons to either discriminate among competing
hypotheses or support, or fail to support, a single
hypothesis. Support for one or more of the tested
hypotheses often leads to additional H-D testing,
whereas lack of support may motivate the investigator
to modify existing hypotheses or develop new ones.
Although our focus is on the utility of predictive
modeling, we note that SCM approaches can be used in
Steps (1) and (4) of a general H-D framework
(Grace, 2024; Grace & Irvine, 2020).

Step (4) of H-D science, the comparison of observations
with predictions, is used to discriminate among
competing hypotheses, to assess appropriateness (e.g.,
goodness of fit) of specific hypotheses, to estimate
parameters of key model relationships (a focus of
SCM), and to compute predictions (e.g., for subsequent
H-D iterations and for conservation decisions). The
importance of comparing observations with predictions
as a path to understanding has been emphasized many
times over the years to ecologists, most recently in con-
tributions dealing with forecasting (Dietze et al., 2018;
Houlahan et al., 2016). For this essay, the key point is
that hypothesis-based predictions (typically produced
by models corresponding to the hypotheses) are an
essential ingredient for H-D science.

Focus on causal relationships

H-D science provides a general approach to learning,
with few restrictions on the kinds of data and observa-
tions that can be used with it. Thus, H-D approaches to
assessing causation can be based on the analysis of static
patterns of state variables (e.g., with some sort of spatial
replication), specifically, by interpreting these patterns in
terms of causal relationships about the processes that
generated them. However, any static pattern can usually
be generated by many different processes, so conclusions

from static analyses are frequently ambiguous and
have produced controversy (e.g., Connor & Simberloff,
1984; Gilpin & Diamond, 1984). Plausible hypotheses
about pattern generation often include both causal
and noncausal (neutral) models (e.g., Caswell, 1976;
Connor & Simberloff, 1979), with accompanying discussion
(and disagreement) about what constitutes an appropriate
noncausal model (e.g., Connor & Simberloff, 1984;
Diamond & Gilpin, 1982; Gilpin & Diamond, 1984).

These difficulties associated with interpreting
pattern-based analyses have led many ecologists to address
causal hypotheses by focusing directly on the process
parameters that underlie system dynamics (e.g., rates of
extinction/colonization, birth/death, and habitat transi-
tion). Causation is addressed in such modeling by includ-
ing parameters for the effect of putative causal factors on
one or more process parameters. This approach is consis-
tent with the view of causation as a “probability-raiser-of-
processes” and usually entails observations from temporal
sequences of state and other variables within the same sys-
tem. Explicit incorporation of time in system models also
provides an avenue to directly deal with reciprocal cau-
sation (expected from many important ecological rela-
tionships, e.g., competition, predation, parasitism,
disease) and feedback loops (e.g., density dependence).
Because the effects of causal variables are modeled
directly, confounding is not a major problem. We can
use the entire system of equations, modify one variable,
and then estimate the effect of that variable as the
difference between the response variable value before
and after the modification. If the estimated effect
approaches 0, or model selection does not favor this
model, then this indicates the absence of probabilistic
causation. Van Horne (1983), Tyre et al. (2001),
Yackulic et al. (2015), and MacKenzie et al. (2018) present
more detailed discussions contrasting pattern- versus
process-based approaches for investigating ecological
dynamics, arguing for direct inference on parameters
that govern processes (referred to as dynamic rate
parameters and vital rates).

With respect to the utility of resulting causal infer-
ences, consequences of management and conservation
actions are frequently modeled via their effects on
dynamic rate parameters (Nichols, 2021). In addition,
management applications often require time-specific
models for making state-dependent decisions (Eaton
et al., 2021; Johnson et al., 1997; McGowan et al., 2015),
and average causal effects based on static variables at mul-
tiple locations are less likely to be useful for this purpose.
These observations argue for drawing inferences about
causation using the process-based approach described
above, as such inferences will be useful for management
and conservation.
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CRITICISMS OF PREDICTIVE
MODELING AND MODEL
SELECTION BY SOME SCM
PROPONENTS

Predictive modeling is not useful for
inferring causation

Arif and MacNeil (2022b) discuss the analysis of observa-
tional data and state that “predictive approaches are not
appropriate for drawing causal conclusions,” distinguishing
between prediction and causal inference. They summa-
rize their view of the distinction between prediction and
causation by stating that “predictive inference (i.e., which
model best predicts Y?) … is fundamentally distinct from
causal inference (i.e., what is the effect of X on Y?).”
Some SCM proponents who discuss causal inference even
define “prediction” as having “no focus on the causal or
temporal structure among the explanatory variables”
(Laubach et al., 2021). Although the tasks of prediction
and inference differ, we emphasize that one important
use of prediction is as a component of inference.

Predictive modeling is sometimes carried out in the
absence of a causal model. For example, attempting to
predict one variable with many covariates in the absence
of a priori causal hypotheses may be useful for causal
hypothesis generation, but does not lead directly to infer-
ences about causation. Such uses differ substantially from
most descriptions of the scientific method, in which the
key step is the comparison of observations against
model-based predictions (e.g., Chamberlin, 1897; Platt,
1964; Popper, 1962; Williams et al., 2002). In such com-
parisons, the models are frequently based on causal
hypotheses, leading to direct inferences about causation.

We thus disagree with efforts to divorce the concepts
of prediction and causation, instead viewing predictions
as essential for most inferences about causation.
Definitions of causation make explicit predictions about
the relationship between the occurrences of cause and
effect. Indeed, the potential to use causal models to make
predictions about effects is one of the primary reasons for
wanting to understand causation.

GLMs and model selection can yield biased
results

Focusing on the relationship between a response variable
and potential causal variables, proponents of SCM
describe situations in which GLM analyses can produce
biased estimates of causal effects (e.g., Arif & MacNeil,
2022a, 2022b; Elwert, 2013; Ferraro et al., 2019;
Greenland et al., 1999; Laubach et al., 2021; Pearl, 2009).

For example, these situations include the use of a predic-
tor (hypothesized causal factor) that is an intermediate
variable along a causal pathway and the use of covariates
that affect both predictor and response variables.
Analytic approaches based on DAGs (most prominently,
the “backdoor criterion” procedure; Pearl, 2009) were
developed to produce unbiased inferences about causa-
tion in the face of these potential sources of bias and are
an important contribution of SCM. We believe that influ-
ences of non-focal variables can also be dealt with in a
traditional analytic framework by hard thought devoted
to model construction and by the direct modeling of vital
rates.

Criticisms of predictive modeling include a simulated
example (Arif & MacNeil, 2022b) in which simulations
were based on a DAG that represented an exact depiction
of the system’s causal structure. Estimation naturally
reproduced a focal causal effect parameter accurately.
Multiple GLMs were fit to the simulated data as well, and
the selected model did not estimate the magnitude of the
effect accurately (Arif & MacNeil, 2022b). This would be
expected, as the simulated DAG model was not a mem-
ber of the GLM model set. Rather than providing evi-
dence against predictive GLM modeling, this example
illustrated that reasonable inferences can be obtained
when estimation is based on perfect knowledge of a sys-
tem’s causal structure and that such inferences can be
superior to multimodel inference when a good approxi-
mating model is not included in the model set.

In contrasting SCM and predictive modeling, many of
the proponents of SCM target the use of GLMs and
related analytic methods with multiple covariates and an
“all possible models” approach. Similar criticism has
been leveled by many other ecologists over the years
(e.g., Burnham & Anderson, 2002; Nicholson, 1954;
Romesburg, 1981; Rexstad et al., 1988; Williams et al.,
2002). Such criticisms are especially relevant now, with
the current emphasis by some on “big data” analyses
using machine learning (ML) and artificial intelligence
(AI) methods (e.g., Nichols et al., 2012). Such
approaches can be defended as potentially useful in
exploratory analyses, but the outcome of such analyses
is hypothesis generation rather than reliable inference
about causation. In summary, predictive models and
model selection have often been misused, but when
thoughtfully used, they continue to be very useful to
hypothesis-driven science.

The use of a DAG, the identification of potential
sources of bias, and the development of methods that
properly deal with such bias are important and useful
contributions of SCM. However, the accompanying criti-
cism, by some, of GLMs, predictive models, and model
selection is misleading. These criticisms should target
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only the subset of such analyses not guided by a priori
hypotheses.

INVESTIGATING CAUSATION
USING GLMs AND MODEL
SELECTION

Example 1

Here, we present an example analysis of an ecological sys-
tem based on GLMs and model selection. We use an exam-
ple that we know to avoid potentially misinterpreting what
others have done. Miller et al. (2012) studied an endan-
gered species of toad (Arroyo toad, Anaxyrus californicus)
and two variables thought to have important causal influ-
ences on toad presence at a site: (1) presence/absence of a
predator community composed of bullfrogs, crayfish, and
predatory fish; and (2) habitat suitability—whether a site
contained water or not at the beginning of the breeding
season. Toad presence, predator presence, and habitat suit-
ability were all dynamic state variables. An additional
static variable was wetland type, indicating whether the
site was populated with ephemeral or perennial streams.
The study was conducted within three watersheds at

Camp Pendleton in southwestern California. Details of
sampling were very important to model development in
this study and were appropriately modeled (for details, see
Miller et al., 2012), but here, we focus only on causal struc-
ture of the model.

A diagram specifying hypothesized causal relation-
ships for this system is presented in Figure 1. This is not
a DAG, but rather our attempt to diagram causal struc-
ture in a dynamic model. It includes two different time
steps, year t = 1 and year t = 2, corresponding to the first
two annual sampling occasions of the Miller et al. (2012)
study. Subsequent time steps would be diagrammed in a
similar manner to t = 2. The inclusion of time permitted
a focus on the vital rates governing state variable transi-
tions, dealt with reciprocal causation between toads and
predators (e.g., see Greenland et al., 1999), and incorpo-
rated Markovian dependence; for example, toad state for
a site at time t + 1 depends in part on toad state for that
site at time t.

The causal structure of Figure 1 shows variables
affecting vital rates, rather than only system state vari-
ables. The arrows in Figure 1 are based on ideas of proba-
bilistic causation (Schaffer, 2001). For t = 2 (and
subsequent times), potential causal factors directly affect
the state transition parameters (i.e., probabilities of site

F I GURE 1 Causal influence diagram for the first two sampling periods in the general model of Miller et al. (2012). Time t = 1

corresponds to the initial sampling period of the study and t = 2 to the second sampling period. At t = 1, there is no prior information on

state variables (toads, predators, and habitat), so potential causal factors are modeled as affecting the state variables directly. For t = 2

(and subsequent times not represented in this figure), potential causal factors directly affect the transition parameters (i.e., probabilities of

site extinction and colonization) that govern the arrows connecting state variables at time t = 1 and time t = 2.
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extinction and colonization). At t = 1, there is no prior
(t = 0) information on state variables (toads, predators,
habitat), so potential causal factors are modeled as affect-
ing the state variables directly.

As an example of our diagramming of state transition
parameters following time t = 1, note that four arrows
point to the arrow specifying the transition between toad
state at t = 1 and at t = 2. Two of these arrows originate
at habitat suitability (presence/absence of water at times
t = 1 and t = 2). If a site is unsuitable at time t = 2, then
neither toads nor predators can be present. If the habitat
is suitable at t = 2, the probability of toad presence then
is partly dependent on habitat state at time t = 1. If toads
are absent from the site at time t = 1, then the probability
that toads colonize between t = 1 and t = 2 is hypothe-
sized to be greater if habitat is suitable at t = 1 than if habi-
tat is unsuitable. If toads are present at a site at time
t = 1, the presence of predators at the site at time t = 1
is hypothesized to increase the probability of local
extinction. If toads are absent at time t = 1, then the
presence of predators at that time is hypothesized to
decrease the probability of local colonization of toads
between t = 1 and t = 2. Wetland type (ephemeral or
perennial) is not time-specific and may influence toad
dynamics beyond simply its effect on habitat suitability.
The inclusion of wetland type represents an effort to
deal with unidentified causal variables that may be
associated with these sites (e.g., akin to the inclusion of
site in the modeling of Dee et al., 2023). Finally, the
toad state at time t = 1 clearly influences the
Markovian transition to toad state at time t = 2 by
specifying the appropriate process transition parame-
ter, extinction, or colonization probability.

Rather than creating a diagram such as Figure 1,
Miller et al. (2012) specified this structure in a transition
matrix, elements of which were functions of vital rates
(extinction, colonization) for the three dynamic variables.
Our central point with this description is that the analysis
of Miller et al. (2012) included multiple hypotheses about
causal relationships among the variables of this system.
This detailed specification provided a means of dealing
with the various sources of bias identified by proponents
of SCM. For example, “confounding bias” is stated to
occur when a variable that affects both a predictor and
the response variable of interest is not “controlled for”
(e.g., Arif & MacNeil, 2022b; Greenland et al., 1999;
Laubach et al., 2021). Habitat suitability at time t = 1
would be such a variable in Figure 1, affecting the proba-
bility of both toad and predator presence at time t = 2.
However, this causes no problems for models based on
Figure 1, because the multiple relevant relationships that
were identified are all included. The effect of predators at
t = 1 on toad presence at t = 2 can be directly estimated

with no confounding habitat effects (habitat effects are
part of the model).

A dynamic occupancy modeling (MacKenzie et al.,
2003, 2018) framework was used to deal with nondete-
ction of toads and predators during sampling. Transition
and detection parameters were modeled as functions of
system variables using a GLM approach with logit links
in a likelihood framework (Miller et al., 2012). The dia-
gram of Figure 1 represents the most general (most rela-
tionships and parameters) model investigated, but
simpler models were considered as well. Effect parame-
ters associated with the different variables were estimated
directly, conditional on model structure.

In distinguishing between standard statistical analysis
and causal analysis, Pearl (2010) stated “Causal analy-
sis goes one step further; its aim is to infer not only the
likelihood of events under static conditions, but also the
dynamics of events under changing conditions, for exam-
ple, changes induced by treatments or external interven-
tions.” Based on the analysis of Miller et al. (2012),
predicted effects of a change in any system variable on a
response variable can be computed directly based on the
modeled transition parameter estimates. Such predicted
effects can be computed conditional on specified values
for each nonintervention variable or else computed as
averages over sets of such values.

As with most observational approaches to investigat-
ing causation, the results of Miller et al. (2012) did not
prove any of the hypothesized causal relationships.
Instead, some of the hypothesized relationships of
Figure 1 were supported, and estimates of effect param-
eters were obtained. Subsequent studies of this system
would be required to produce additional support and
increase strength of inference.

Example 2

Our second example represents one step in a sequence of
studies focused on a specific causal question of conserva-
tion concern. Various lines of evidence based on more
mechanistic studies of behavioral interactions, food
habits, habitat preferences, etc., led to the hypothesis that
the barred owl (Strix varia) invasion of the Pacific
Northwest may have been partially responsible for
declines in northern spotted owl (Strix occidentalis
caurina) populations (see reviews in Dugger et al., 2011;
Forsman et al., 2011; Yackulic et al., 2014). Replicate
detection data were collected during spring and early
summer over a 22-year period for spotted owls and
barred owls on a study area in western Oregon. A total of
158 contiguous polygons (i.e., potential spotted owl terri-
tories, “patches”) were surveyed, covering an area of
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approximately 1000 km2 (see Yackulic et al., 2014 for
details). In 1990, at the beginning of the study, barred
owls occupied virtually no patches, but had increased to
about 90% occupancy in 2011.

Yackulic et al. (2014) focused on the primary hypoth-
esis that barred owl presence in a patch increases the
probability of patch-level spotted owl extinction and
decreases the probability of patch-level spotted owl colo-
nization. Reciprocal effects of spotted owl presence on
barred owls were hypothesized but were expected to be
much smaller in magnitude. A previous study (Yackulic
et al., 2012) supported an effect of a habitat variable
(denoted in Figure 2 as habitat 2) on barred owl occu-
pancy, extinction, and colonization. For spotted owls,
habitat 2 and an additional habitat variable (habitat 1)
were hypothesized to be positively related to initial occu-
pancy (sampling period 1) and colonization, and nega-
tively related to extinction. Total study area patches
occupied by conspecifics (obtained by summing occupan-
cies of all non-focal patches) was hypothesized to posi-
tively affect colonization (mechanistically, more sources
of colonists) and negatively affect extinction (rescue
effect, Brown & Kodric-Brown, 1977). A causal diagram
for this system (Figure 2) shows both the first and second
years of sampling, with all subsequent years modeled as
for year 2.

Figure 2 does not show the modeling of the sampling
process, which was important, as nondetection of one
species at a site does not mean its absence. Even more
important, detection probability for each species was
modeled as a function of presence of the other species,
and results supported previous work (Bailey et al., 2009)
that barred owl presence results in decreased detection
probabilities for spotted owls. The modeling of compo-
nents of the sampling process (e.g., detection probability,
misclassification) as functions of covariates has been yet
another effort by ecologists over the years to deal with
potential confounding variables, where the confounding
in this case affects the process of data generation.

The effect parameters for all Figure 2 arrows were
estimated by Yackulic et al. (2014). A key result was that
patch-level extinction probability for spotted owls
increased from 0.09 per year when barred owls were
absent to 0.29 when they were present in the patch, at
2011 occupancy levels, supporting a primary causal hypo-
thesis of substantial conservation relevance.

A single analysis of observational data, whether using
DAGs, GLMs, and model selection, or any other
approach is very unlikely to provide definitive evidence
of a causal effect. Multiple studies in which predictions of
a causal hypothesis are consistently supported naturally
increase our belief in the relationship. Analyses very

F I GURE 2 Causal influence diagram for the first two sampling periods in the general model of Yackulic et al. (2014). SOi,t = spotted

owl occupancy for site i at sampling period t, and BOi,t = barred owl occupancy for site i at sampling period t.
P

j≠ iBOj,1 and
P

j≠ iSOj,1

represent the number of non-focal sites occupied in the entire study area by barred owls and spotted owls, respectively, at the first sampling

period. Time t= 1 corresponds to the initial sampling period of the study, and t= 2 to the second sampling period. At t= 1, there is no prior

information on state variables (SOi,1, BOi,1), so habitat variables are modeled as affecting the state variables directly. For t= 2

(and subsequent times not represented in this figure), potential causal factors directly affect the transition parameters (i.e., probabilities of

site extinction and colonization) that govern the arrows connecting state variables at time t= 1 and time t= 2.
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similar to those of Yackulic et al. (2014) were repeated
for multiple study areas in the Pacific Northwest by
Dugger et al. (2016) and Yackulic et al. (2019), and results
supported the initial findings. Experimental-barred owl
removals, and subsequent spotted owl response, at a sin-
gle study area provided additional support (Diller et al.,
2016). Finally, a larger BACI-design investigation across
multiple study areas provided strong support for negative
barred owl effects on spotted owls (Wiens et al., 2021).
This cumulative work provides a nice example of a
sequence of studies, all based on predictive modeling,
yielding stronger and stronger inferences about a causal
relationship. Although formal “proof” of causation is
elusive for complex ecological systems, accumulated
evidence of the barred owl-spotted owl relationships is
very strong and has appropriately led the US Fish and
Wildlife Service to consider a large-scale barred owl
removal program as a measure to conserve spotted
owls. Accumulation of evidence about causation
through multiple studies provides one approach to
combatting the crisis of reproducibility and replicabil-
ity in observational science (Nichols et al., 2019, 2021).

Summary comments on examples

The work of Miller et al. (2012) and Yackulic et al. (2014)
represents careful analyses of simple ecological systems
and provides examples of many such analyses carried
out using predictive models embedded within
capture–recapture and occupancy modeling frame-
works. Within these frameworks, the importance of
carefully developing causal hypotheses is reflected in
software development, with the most widely used
data-analytic programs (e.g., Cooch & White, 2024;
Hines, 2006; Kéry & Royle, 2021; Lebreton et al., 1992)
requiring users to carefully specify their models of both
ecological and sampling processes. As advocated by the
proponents of SCM, the analyses of Miller et al. (2012)
and Yackulic et al. (2014) were hypothesis-driven.

A central point of these examples is that ecologists
have conducted careful analyses permitting inferences
about causation using predictive modeling and model
selection within an H-D process and in the absence of
SCM guidance. Data in our two examples were fit to mul-
tiple plausible models developed for a small set of a priori
causal hypotheses, an approach found in some SCM
efforts (e.g., Grace, 2024; Grace & Irvine, 2020). Model
selection was used to help assess support for the different
models, and model-averaging was used, when appropri-
ate, to express model uncertainty for estimation of some
focal parameters (see Buckland et al., 1997; Burnham &
Anderson, 2002).

Both examples based causal modeling on the vital
rates governing state variable dynamics. Predictive mode-
ling for investigating causation can be used with static state
variables as well, but we believe that process-based model-
ing is one step more “mechanistic” and provides some
advantages. For example, assume a causal factor that influ-
ences the proportion of patches in a metapopulation that is
occupied. The causal factor must act upon patch-level prob-
abilities of colonization and extinction. Even when these
effects of a causal factor on vital rates do not vary, effects on
changes in the proportion of patches occupied will depend
strongly on the current state of the system (Yackulic
et al., 2015). If few patches are occupied at time t, then the
proportion occupied at t + 1 will be dominated by the effect
of the causal factor on colonization probability. However, if
a large proportion of patches is occupied at t, then occu-
pancy at t + 1 will be largely determined by the effect of the
causal factor on local extinction probability. The imposition
of the causal factor will typically produce different changes
in the proportion of patches occupied, depending on the ini-
tial system state. Initial system state is likely to differ for sys-
tems characterized by different vital rates, by whether the
system is experiencing transient dynamics versus near
equilibrium, etc.

Both of our examples included potentially confou-
nding variables, as a means of clarifying the specific
influences of these variables and obtaining unbiased
estimates of effect parameters. In the first example,
unidentified variables associated with wetland type
were dealt with via the inclusion of this variable (see
Dee et al., 2023 for similar approach). Both examples
also included models for both ecological and sampling
processes, recognizing that confounding in either process
can become a source of bias. Estimated variances of effect
parameters included variance components associated with
detection probability, the stochastic variation associated
with the modeled dynamic processes, and, in some
cases, model uncertainty. Considerations of the various
issues illustrated in these two examples have a long history
in careful ecological investigations and methodological
texts (e.g., Kéry & Royle, 2015, 2021; MacKenzie
et al., 2018; Seber, 1982; Seber & Schofield, 2019; Williams
et al., 2002).

Finally, we note that both of our examples are based
on dynamic occupancy modeling (MacKenzie et al.,
2018), in which the state variable is species presence and
vital rates are probabilities of local extinction and coloniza-
tion. However, the same approach can be used within a
capture–recapture framework (e.g., Cooch & White, 2001;
Lebreton et al., 1992; Seber, 1982; Seber & Schofield, 2019;
Williams et al., 2002), where species abundances are the
state variables and rates of survival and recruitment are
the vital rates (e.g., see Yackulic et al., 2018).
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DISCUSSION AND CONCLUSIONS

Proponents of SCM generally argue for an approach to
causal inference that is heavily dependent on a priori
hypotheses, and we believe that this argument is
important and deserving of ecologists’ attention.
Indeed, structural uncertainty about causal hypotheses
can yield DAGS that cannot be distinguished by
observational data alone but require interventions
and observations of resulting dynamics to resolve
(Castellitti & Consonni, 2020). SCM approaches also
devote special attention to identifying potential
confounding variables and eliminating their biasing
effects on casual parameter estimation, an important
focus that is also deserving of greater attention in eco-
logical analyses.

Some proponents of SCM criticize the use of predic-
tive modeling and model selection for drawing causal
inferences. We agree that the use of GLMs and model
selection with many available covariates, absent strong a
priori hypotheses about causal relationships with the
response variable and interrelationships among covariates,
can often be affected by different forms of bias and are fre-
quently not useful for causal inference. However, we also
believe that the thoughtful use of predictive modeling and
model selection within an H-D framework is an important
means of learning, both in general terms and with
respect to causation. Within this framework, predictive
models are developed for hypotheses that are them-
selves frequently based on knowledge of relevant mecha-
nisms. Well-developed methods exist to discriminate
among competing predictive models, assess model fit,
provide estimates of key parameters and associated
variances–covariances, and make predictions (with associ-
ated measures of uncertainty) of system response to
changes in causal factors. Formal approaches have also
been developed for accumulating knowledge across multi-
ple studies using comparisons of observations with
model-based predictions (e.g., Hilborn & Mangel, 1997;
Nichols et al., 2019, 2021).

The temporal component of causation forces an
interest in dynamics, leading us to outline a specific
H-D approach focused explicitly on system dynamics.
Under this approach, causal relationships are modeled
as effects on system vital rates, consistent with a
probability-raisers-of-processes perspective (Schaffer,
2001). Effects of confounding causal variables that can
be identified, potentially confounding sampling pro-
cesses, feedback loops, and reciprocal causation can be
modeled directly. Well-developed approaches to model
selection are available, as are methods for incorporating
model uncertainty into estimated variances. Of course,
causal modeling within a H-D approach is not restricted

to this focus on vital rates and can proceed using static
state variables as well.

Although identified confounding variables can be
dealt with using SCM and predictive modeling appro-
aches, the issue of potential unidentified causal factors
casts uncertainty over most causal inferences, whether
they are based on predictive modeling or SCM. SCM and
predictive modeling proponents have developed useful
approaches for addressing this issue to a degree (e.g., see
Dee et al., 2023 and above), but none of these guarantees
that results are not affected by unidentified confounders.
This issue argues strongly for (1) a combination of mech-
anistic knowledge and hard thinking in the development
of hypotheses (e.g., Grace, 2024; Grace & Irvine, 2020;
Nicholson, 1954) and (2) repeated testing of hypotheses
to accumulate evidence (e.g., Grace, 2024; Hilborn &
Mangel, 1997; Nelder, 1986; Nichols et al., 2019, 2021;
Tredennick et al., 2021). This recommendation for
repeated testing should not be interpreted as a recom-
mendation to delay decisions. As noted in the discussion
of spotted owls, conservation decisions need not await
“proof,” but should be based on the best available infor-
mation, that is, that which has accumulated up until the
time of the decision.

Our perspective that predictive modeling in conjunc-
tion with H-D science can be useful for investigating
causation is consistent with the concept of evidential
pluralism, which argues that causal investigations
require both mechanistic hypotheses and tests of asso-
ciation (Grace, 2024; Shan & Williamson, 2023). The
hypothesis-generation step of H-D science is generally
informed by mechanistic knowledge of underlying
causal relationships, and there are multiple kinds of
mechanisms and multiple ways to model associations
as well. Further extending the general idea of plural-
ism, our own view is consistent with that of Fretwell’s
(1972) comments on H-D science: “A discussion of phi-
losophy is, or should be, a plea for tolerance, not gratu-
itous advice. Whatever works should be acceptable…”

In conclusion, SCM provides one approach to the
study of causation using observational data, and the SCM
emphases on specifying causal hypotheses and identify-
ing causal effects in the presence of potential con-
founders deserve more attention. Counter to claims by
some, predictive modeling can also be used to investigate
causation. The comparison of model-based predictions
against empirical observations provides the evidence that
we use to either corroborate focal hypotheses or fail to
support them. These comparisons also provide the basis
for updating model “weights” (reflecting the relative con-
fidence in the different models of the model set) in efforts
to accumulate knowledge across studies (e.g., Hilborn &
Mangel, 1997; Johnson et al., 1997; Nichols et al., 2019,
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2021). In addition, model-based predictions provide the
basis for management and conservation decisions, a fact
responsible for much of our interest in causation. It
would be unfortunate if readers of some SCM advocates
concluded that model-based predictions, and their degree
of correspondence with observations, were somehow
divorced from drawing inferences about causation. This
comparison between predictions and observations forms
the basis for the H-D scientific method.
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